Spark Programming:
Using Scala

Scala

Scala has many other nice features:

Traits.
Implicit conversions.

XML literals,

o

o

e Pattern Matching.

o

e Parser combinators, ...

Scala

Virtual stack machine that executes Java bytecode (.class files).
Bytecode is hardware/system independent.

Provides layer of protection to host machine.

Built-in garbage collection.

Just-in-time compilation (bytecode — machine code).
Often as fast as C.
Many languages:

» JVM language: Java, Scala, Clojure, Groovy.
» Other JVM compilers: Python, Ruby, C, Common Lisp, --

Scala Shell

$ scala

Welcome to Scala version 2.11.2.

Type in expressions to have them evaluated.
Type :help for more information.

scala>

scala> 40 + 2
res0: Int = 42

scala> res(0 * 2
resl: Int = 84

Running Scala Script

A script is sequence of statements in a file, interpreted sequentially.

hello.scala:

println(“Hello, World!")

$ scala hello.scala
Hello, World!

A Standalone Scala Application

A standalone Scala application needs to have a singleton object with a method
called main.

* main method takes an input of type Array[String] and does not return any
value.

« Itis the entry point of a Scala application.
» The singleton object containing the main method can be named anything.

object HelloWorld {
def main(args: Array[String]): Unit = {
println("Hello World!")

}

Compiling and Running Scala

Test.scala|— scalac — |Test.class | — scala

Hello.scala:

object Hello {
def main(args: Array[String]) = println("Hello, World!");
}

$ scalac Hello.scala

$ 1s

Hello$.class Hello.class Hello.scala
$ scala Hello

Hello, World!

@ Can use fsc (compile server) for faster compilation when frequently
compiling.

@ scala is actually a bash script calling java (the JVM).

Basic Scala Variables

Variable Type Description

Byte 8-bit signed integer

Short 16-bit signed integer

Int 32-bit signed integer

Long 64-bit signed integer

Float 32-bit single precision float
Double 64-bit double precision float

Char 16-bit unsigned Unicode character
String A sequence of Chars

Boolean true or false

Defining Variables

scala> var msg : String = "Hello"
msg: String = Hello

scala> var msg2 = " World"
msg2: String = " World"
scala> msg = "Hi"

msg: String = Hi

scala> msg + msg2
resO: String = Hello World

scala> msg = 3
<console>:8: error: type mismatch;
found : Int(3)
required: String
msg = 3

variables vs values

vars can be reassigned.

scala> wvar number = 2

number: Int = 2

scala> wvar number = number + 3
number: Int = 5

vals cannot be reassigned once defined.

scala> val number = 42
number: Int = 42

scala> number = 23

<console>:8: error: reassignment to val
number = 23

-

When in doubt, try to use vals for readability and a more functional
programming style.

Integer types

The following two statements are equivalent.

val y: Int = 10;
val y = 10

Floating point types

Float | 32-bit single precision float
Double | 64-bit single precision float

scala> val y = 42E-4; val x = 32.0
y: Double = 0.0042
x: Double = 32.0

scala> x * y
res8: Double = 0.134

Strings and Symbols

String

a sequence of Chars.

Symbol

an ‘interned’ String.

val hello = "Hello World"
Hello World

scala>
hello: String =
val color = val value=
Symbol =

Symbol =

"hearts;
’hearts

scala> ’queen
color:

value: ’queen

@ String is simply an alias for java.lang.String.

@ Symbols can often be used in place of enums or global constants.

Booleans and comparisons

Boolean | true or false

scala> val x = 5
x: Int = 5

scala> x < 3+2
res3: Boolean = false

scala> val y = "Hello"
y: String = Hello

scala> y == "Hello"
resd: Boolean = true

e == tests for value equality, not reference equality.

Conditionals with if

if (condition) expression [else if (condition) expression| [else expression]

@ condition is any expression that returns a Boolean.

val a = 7

if (a % 2 == 0) {
println("a is even")

} else if (a % == 0) {

println("a is a multiple of 3")
} else println("none of the above")

Everything is an Expression

There are no statements in Scala.
Every block of code returns a value. This value can be Unit.

Compound expressions (with {. ..} return result of last expression).

Type of expression automatically inferred (or can make it explicit).

scala> val z : Int = {val x = 4; val y = 2; x / y}
z: Int = 2

scala> val a = {val b = 4; }

a: Unit = ()

Conditionals are also Expressions

scala>
a: Int =
val abs_a = if (a > 0) a else
Int = 7

scala> -a

abs_a:

@ What happens if return type is unknown (e.g. missing else)?

scala> val =z Boolean = if (42 > 23) true
<console>:7: error: type mismatch;
found Unit
required: Boolean
val z Boolean = if (42 > 23) true
scala> val z = if (42 > 23) true
z: AnyVal = true

Loops with while and dowhile

scala> var x = 1

scala> while (x <= 5) {println(x); x+= 1}
1

2

3

4

5

scala> x

resl: Int = 6

scala> do {x+=1; println(x);} while (x<=5)
7

@ While loops usually indicate imperative programing style (manipulate
the content of some variable in each step).

@ Result type of while is Unit.

for loops

scala> for (y<-List(1,2,3)) {println(y)}
1
2
3

@ used in this way the result of a for expression is Unit

Range objects

scala> 1 to 10 // or 1.to(10)
resl: scala.collection.immutable.Range.Inclusive

Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> 10 to (0,-2)
res2: scala.collection.immutable.Range.Inclusive

Range (10, 8, 6, 4, 2, 0)

scala> for (i <- 1 to 3) println(i*2);
2
4
6

for as an expression

for (seq) yield expression

@ seq contains at least one generator of the form x <- sequence
@ seqg can contain definitions and filters.

scala> for (x <- List(1,2,3)) yield =x*2
res8: List[Int] = List(2, 4, 6)

scala> for { x <- 1 to 7 // generator

y = x h 2; // definition
if (y == 0) // filter
} yield {

println(x)
X

2
<
6

resl: scala.collection.immutable.IndexedSeq[Int] =
Vector (2, 4, 6)

Defining Functions

def name(parami: typei,--- paramn: typen) : return_type = body

scala> def max(x: Int, y: Int) : Int = {
if (x > y) x
else y

}
max: (x: Int, y: Int)Int

Return value of a function is the result of the body expression
({} are optional in this case).

Defining Functions

def add(firstInput: Int, secondInput: Int): Int = {
val sum = firstInput + secondInput
return sum

}

Scala allows a concise version of the same function, as shown next.

def add(firstInput: Int, secondInput: Int) = firstInput + secondInput

The second version does the exact same thing as the first version.
The type of the returned data is omitted since the compiler can infer it from the code.

Calling functions

scala> max (2,3)
resl: Int = 3

If a function does not take parameters, do not use parantheses

scala> def greet() = println("Hello")
greet: ()Unit

scala> greet
Hello

Higher-Order Methods

A method that takes a function as an input parameter is called a higher-order
method.
 a high-order function is a function that takes another function as input.
* helps reduce code duplication.
* helps you write concise code.

The following example shows a simple higher-order function.

def encode(n: Int, f: (Int) => Long): Long = {
val x = n * 10
F(x)

}

Function Literals

A function literal is an unnamed or anonymous function in source code and
defined with input parameters in parenthesis, followed by a right arrow and the
body of the function.

« can be used in an application just like a string literal.

« can be passed as an input to a higher-order method or function.

« can also be assigned to a variable.

» is enclosed in optional curly braces.

An example is: Can be used higher-order functions:
(x: Int) => {
X + 100

}

val code = encode(10, (x: Int) =» x + 100)

(x: Int) => x + 100

Closures

A closure is a function literal that uses a non-local non-parameter variable
captured from its environment.

Sometimes people use the terms function literal and closure interchangeably,
but technically, they are not the same.

The following code shows an example of a closure:
def encodeWithSeed(num: Int, seed: Int): Long = {

def encode(x: Int, func: (Int) => Int): Long = {
val y = x + 1000
func(y)

}

val result = encode(num, (n: Int) => (n * seed))
result

}

Classes

A class is an object-oriented

programming concept. It provides a class Car(mk: String, ml: String, cr: String) {
. .) 1 make = mk
higher-level programming abstraction o oo 1
 Aclass in Scala is similar to that var color = cr
In other object-oriented

def repaint(newColor: String) = {

Ianguages_' _ color = newColor
* An objectis an instance of a }
class. }
* Aclassis defm_ed In S_OUI’CG COde’ An instance of a class is created using the keyword new.
whereas an object exists at
runtime val mustang = new Car("Ford", "Mustang"”, "Red")

. . . val corvette = new Car("GM", "Corvette", "Black")
« Aclass is defined using the

keyword class

Singletons

In object-oriented programming, it is to ﬂbg:;tﬂnzﬁ?a:;zmgziﬁl‘;" im .
define a class that can be instantiated ___p ' 8)
only once. }
* Adclass that can be instantiated only def read (streamld: Int): Array[Byte] = {
once is called a singleton. .
« Scala provides the keyword object for }
defining a singleton class. def close (): Unit = {
}

All types are classes

@ All values are instances of some class.
@ This is even true for basic numeric types (unlike Java).

@ Can call methods on instances of these classes.

scala> 42.toString
resl: String = 42

Case class

A case class is a class with a case modifier.

case class Message(from: String, to: String, content: String)

Scala provides a few syntactic conveniences to a case class:
« Can create an instance of a case class without the keyword new.

val reguest = Message("harry", "sam", "fight")

 all input parameters specified in the definition of a case class implicitly get
a val prefix. Scala treats the case class Message as if it was defined.

class Message(val from: String, val to: String, val content: String)

Pattern Matching

Pattern matching is a Scala concept

= . def colorToNumber(color: String): Int =
that looks similar to a switch statement ¢ _coLorToNumber(color: String): Int => {

val num = color match {

in other languages. case "Red” => 1
» itis a more powerful tool than a case "Blue" => 2
switch statement. case "Green" =» 3
« Instead of the keyword switch, Scala case "Yellow" => 4
case =» 0

uses the keyword match
« Unlike switch, a break statement is
. num
not required after the code for each }
case.
« Can be used as a replacement for a
multi-level if-else statement

Pattern Matching

Code on the right-hand side of each right arrow is an expression returning a value.
Therefore, a pattern-matching statement itself is an expression returning a value.

def f(x: Int, y: Int, operator: String): Double = {
operator match {
case "+ =
case
case '
case

}
}

val sum = (10,20, "+")
val product = f(10, 20, "*")

S
i

L
® o W

ty
-y
Ty
Iy

All operators are methods

scala> x = 3
x: Int

scala> x.+(2)
resl: Int = 5

scala> x.==(5)
res2: Boolean = true

scala> "fortunate".contains("tuna")
res3: Boolean = true

scala> "fortunate" contains "tuna"
resd: Boolean = true

Traits

A trait represents an interface supported by a hierarchy of related classes.
« Scala traits are similar to Java interfaces.
« Unlike Java, a Scala trait can include implementation of a method.

« Trait can include fields.
* Aclass can reuse the fields and methods implemented in a trait.

The following code shows an example: it shape {
ef area(): Int

}
class Square(length: Int) extends Shape {
def area = length * length
}
class Rectangle(length: Int, width: Int) extends Shape {

def area = length * width
}

val square = new Square(10)
val area = square.area

Tuples

A tuple is a container for storing two or more elements of different types.
It is immutable; it cannot be modified after it has been created.

A tuple is useful in situations where you want to group non-related elements.

If the elements are of the same type, you can use a collection, such as an array
An element in a tuple has a one-based index.

val twoElements = ("10", true)
val threetlements = ("10", "harry", true)

val first = threeElements. 1
val second = threeElements. 2
val third = threeElements. 3

Option Type

An Option is a data type that indicates

the presence or absence of some data.

It represents optional values.

It can be an instance of either a
case class called Some or
singleton object called None.
An instance of Some can store
data of any type.

The None object represents
absence of data.

def colorCode(color: String): Option[Int] = {
color match {
case "red" => Some(1)
case "blue" => Some(2)
case "green" => Some(3)
case _ => None

}
}

val code = colorCode("orange")

code match {
case Some(c) => println("code for orange is: " +)
case None => println("code not defined for orange")

}

Array

An Array is an indexed sequence of elements. All the elements in an array
are of the same type
« |tis a mutable data structure; you can update an element in an array.
« cannot add an element after it has been created. It has a fixed
length.
« Elements have a zero-based index.
» you specify its index in parenthesis

val arr = Array(10, 20, 30, 40)
arr(0) = 50
val first = arr(0)

Lists

A List is a linear sequence of elements of the same type.
* Itis arecursive data structure, unlike an array, itis a flat data structure.
« itis an immutable data structure; it cannot be modified after it has been
created.
list(10,20,30,40)

(1 to 100).tolList
someArray.tolist

val xs
val ys
val zs

Basic operations are:
« Fetching the first element. List provides a method named head.

« Fetching all the elements except the first element. List has a

method named tail.
» Checking whether a list is empty. List has a method named

ISEmpty.

Vector

The Vector class is a hybrid of the List and Array classes.
« combines the performance characteristics of both Array and List.
« provides constant-time indexed access and linear access.
 allows both fast random access and fast functional updates.

val vi = Vector(o, 10, 20, 30, 40)
val v2 = v1 :+ 50

val v3 = v2 :+ 60

val v4 = v3(4)

val v5 = v3(5)

Map

Map is a collection of key-value pairs. In other languages, it known as a
dictionary, associative array, or hash map

 itis an efficient data structure for looking up a value by its key.

* It should not be confused with the map in Hadoop MapReduce.

val capitals = Map("USA" -> "Washington D.C.", "UK" -> "London", "India" -> "New Delhi")
val indiaCapital = capitals("India")

Higher-Order Methods on map

The real power of Scala collections comes from their higher-order methods.
A higher-order method takes a function as its input parameter.

The map method of a Scala collection

« applies its input function to all the elements and returns another collection.
« returned collection has the exact same number of elements

* but returned collection need not be of the same type as the original.

val xs
val ys

List(1, 2, 3, 4)
xs.map((x: Int) => x * 10.0)

xs is of type List[Int] but ys is of type List[Double]

Higher-Order Methods on map

If a function takes a single argument, opening and closing parentheses can be
replaced with opening and closing curly braces, respectively.
The two statements shown next are equivalent.

xs.map((x: Int) => x * 10.0)
xs.map{(x: Int) =»> x * 10.0}

val ys
val ys

Scala allows calling any method using operator notation. For readability, it can
also be written as follows. Scala can infer the type of the parameter passed.

xs map {(x: Int) => x * 10.0}
xs map {x => x * 10.0}

val ys
val ys

Higher-Order Methods on map

If an input to a function literal is used only once in its body, the right arrow and
left-hand side of the right arrow can be dropped. You can write just the body of
the function literal. The two statements shown next are equivalent.

Xs map {x =» x * 10.0}
xs map {_ * 10.0}

val ys
val ys

The underscore character represents an input passed to the map method.
This can be read as multiplying each element in the collection xs by 10.

val ys = xs.map((x: Int) => x * 10.0)
val ys = xs map {_ * 10.0}

flatMap

The flatMap method of a Scala collection is similar to map.

It takes a function as input, applies it to each element in a collection,
and returns another collection.

function passed to flatMap generates a collection for each element in
the original collection.

The flatMap method returns a flattened collection.

val line = "Scala is fun”

val SingleSpace = " "

val words = line.split(SingleSpace)

val arrayOfChars = words flatMap { .tolist}

The toList method creates a list of all the elements in the collection.
It is a useful method for converting a string, an array, or any other
collection type to a list.

filter

The filter method applies a predicate to each element in a collection and
returns another collection consisting of only those elements for which the
predicate returned true.

» A predicate is function that returns a Boolean value.

It returns either true or false.

val xs = (1 to 100).tolList
val even = xs filter { %2 == 0}

foreach

The foreach method of a Scala collection calls its input function on each

element of the collection, but does not return anything.

* Itis similar to the map method.

« The only difference between the two methods is that map returns a
collection and foreach does not return anything.

« Itis arare method that is used for its side effects.

val words = "Scala is fun".split(" ")
words. foreach(println)

reduce

The reduce method returns a single value for a given collection.

The input function to the reduce method takes two inputs at a time and
returns one value.

Essentially, the input function is a binary operator that must be both
associative and commutative.

val xs = List(2, 4, 6, 8, 10)

val sum = xs reduce {(x,y) => x + y}

val product = xs reduce {(x,y) =» x * y}

val max = xs reduce {(x,y) =» if (x > y) x else y}
val min = xs reduce {(x,y) => if (x < y) x else y}

Val words = "Scala is fun" split(" ")
val longestWord = words reduce {(wl, w2) => if(wl.length > w2.length) wl else w2}

	Slide 1
	Slide 2: Scala
	Slide 3: Scala
	Slide 4: Scala Shell
	Slide 5: Running Scala Script
	Slide 6: A Standalone Scala Application
	Slide 7: Compiling and Running Scala
	Slide 8: Basic Scala Variables
	Slide 9: Defining Variables
	Slide 10: variables vs values
	Slide 11: Integer types
	Slide 12: Floating point types
	Slide 13: Strings and Symbols
	Slide 14: Booleans and comparisons
	Slide 15: Conditionals with if
	Slide 16: Everything is an Expression
	Slide 17: Conditionals are also Expressions
	Slide 18: Loops with while and dowhile
	Slide 19: for loops
	Slide 20: Range objects
	Slide 21: for as an expression
	Slide 22: Defining Functions
	Slide 23: Defining Functions
	Slide 24: Calling functions
	Slide 25: Higher-Order Methods
	Slide 26: Function Literals
	Slide 27: Closures
	Slide 28: Classes
	Slide 29: Singletons
	Slide 30: All types are classes
	Slide 31: Case class
	Slide 32: Pattern Matching
	Slide 33: Pattern Matching
	Slide 34: All operators are methods
	Slide 35: Traits
	Slide 36: Tuples
	Slide 37: Option Type
	Slide 38: Array
	Slide 39: Lists
	Slide 40: Vector
	Slide 41: Map
	Slide 42: Higher-Order Methods on map
	Slide 43: Higher-Order Methods on map
	Slide 44: Higher-Order Methods on map
	Slide 45: flatMap
	Slide 46: filter
	Slide 47: foreach
	Slide 48: reduce

