
Spark Programming:
Using Scala

Scala

Scala has many other nice features:

⚫ Traits.

⚫ Implicit conversions.

⚫ Pattern Matching.

⚫ XML literals,

⚫ Parser combinators, ...

Scala

Scala Shell

Running Scala Script

A Standalone Scala Application

A standalone Scala application needs to have a singleton object with a method

called main.

• main method takes an input of type Array[String] and does not return any

value.

• It is the entry point of a Scala application.

• The singleton object containing the main method can be named anything.

Compiling and Running Scala

Basic Scala Variables

Defining Variables

variables vs values

Integer types

Floating point types

Strings and Symbols

Booleans and comparisons

Conditionals with if

Everything is an Expression

Conditionals are also Expressions

Loops with while and dowhile

for loops

Range objects

for as an expression

Defining Functions

Defining Functions

The second version does the exact same thing as the first version.

The type of the returned data is omitted since the compiler can infer it from the code.

Calling functions

Higher-Order Methods

A method that takes a function as an input parameter is called a higher-order

method.

• a high-order function is a function that takes another function as input.

• helps reduce code duplication.

• helps you write concise code.

The following example shows a simple higher-order function.

Function Literals

A function literal is an unnamed or anonymous function in source code and

defined with input parameters in parenthesis, followed by a right arrow and the

body of the function.

• can be used in an application just like a string literal.

• can be passed as an input to a higher-order method or function.

• can also be assigned to a variable.

• is enclosed in optional curly braces.

An example is: Can be used higher-order functions:

Closures

A closure is a function literal that uses a non-local non-parameter variable

captured from its environment.

Sometimes people use the terms function literal and closure interchangeably,

but technically, they are not the same.

The following code shows an example of a closure:

Classes
A class is an object-oriented

programming concept. It provides a

higher-level programming abstraction

• A class in Scala is similar to that

in other object-oriented

languages.

• An object is an instance of a

class.

• A class is defined in source code,

whereas an object exists at

runtime

• A class is defined using the

keyword class

Singletons

In object-oriented programming, it is to

define a class that can be instantiated

only once.

• A class that can be instantiated only

once is called a singleton.

• Scala provides the keyword object for

defining a singleton class.

All types are classes

Case class

A case class is a class with a case modifier.

Scala provides a few syntactic conveniences to a case class:

• Can create an instance of a case class without the keyword new.

• all input parameters specified in the definition of a case class implicitly get

a val prefix. Scala treats the case class Message as if it was defined.

Pattern Matching

Pattern matching is a Scala concept

that looks similar to a switch statement

in other languages.

• it is a more powerful tool than a

switch statement.

• Instead of the keyword switch, Scala

uses the keyword match

• Unlike switch, a break statement is

not required after the code for each

case.

• Can be used as a replacement for a

multi-level if-else statement

Pattern Matching

Code on the right-hand side of each right arrow is an expression returning a value.

Therefore, a pattern-matching statement itself is an expression returning a value.

All operators are methods

Traits
A trait represents an interface supported by a hierarchy of related classes.

• Scala traits are similar to Java interfaces.

• Unlike Java, a Scala trait can include implementation of a method.

• Trait can include fields.

• A class can reuse the fields and methods implemented in a trait.

The following code shows an example:

Tuples
A tuple is a container for storing two or more elements of different types.

It is immutable; it cannot be modified after it has been created.

A tuple is useful in situations where you want to group non-related elements.

If the elements are of the same type, you can use a collection, such as an array

An element in a tuple has a one-based index.

Option Type

An Option is a data type that indicates

the presence or absence of some data.

• It represents optional values.

• It can be an instance of either a

case class called Some or

singleton object called None.

• An instance of Some can store

data of any type.

• The None object represents

absence of data.

Array

An Array is an indexed sequence of elements. All the elements in an array

are of the same type

• It is a mutable data structure; you can update an element in an array.

• cannot add an element after it has been created. It has a fixed

length.

• Elements have a zero-based index.

• you specify its index in parenthesis

Lists
A List is a linear sequence of elements of the same type.

• It is a recursive data structure, unlike an array, itis a flat data structure.

• it is an immutable data structure; it cannot be modified after it has been

created.

Basic operations are:

• Fetching the first element. List provides a method named head.

• Fetching all the elements except the first element. List has a

method named tail.

• Checking whether a list is empty. List has a method named

isEmpty.

Vector

The Vector class is a hybrid of the List and Array classes.

• combines the performance characteristics of both Array and List.

• provides constant-time indexed access and linear access.

• allows both fast random access and fast functional updates.

Map

Map is a collection of key-value pairs. In other languages, it known as a

dictionary, associative array, or hash map

• it is an efficient data structure for looking up a value by its key.

• It should not be confused with the map in Hadoop MapReduce.

Higher-Order Methods on map

The real power of Scala collections comes from their higher-order methods.

A higher-order method takes a function as its input parameter.

The map method of a Scala collection

• applies its input function to all the elements and returns another collection.

• returned collection has the exact same number of elements

• but returned collection need not be of the same type as the original.

xs is of type List[Int] but ys is of type List[Double]

Higher-Order Methods on map

If a function takes a single argument, opening and closing parentheses can be

replaced with opening and closing curly braces, respectively.

The two statements shown next are equivalent.

Scala allows calling any method using operator notation. For readability, it can

also be written as follows. Scala can infer the type of the parameter passed.

Higher-Order Methods on map

If an input to a function literal is used only once in its body, the right arrow and

left-hand side of the right arrow can be dropped. You can write just the body of

the function literal. The two statements shown next are equivalent.

The underscore character represents an input passed to the map method.

This can be read as multiplying each element in the collection xs by 10.

flatMap
The flatMap method of a Scala collection is similar to map.

• It takes a function as input, applies it to each element in a collection,

and returns another collection.

• function passed to flatMap generates a collection for each element in

the original collection.

• The flatMap method returns a flattened collection.

• The toList method creates a list of all the elements in the collection.

• It is a useful method for converting a string, an array, or any other

collection type to a list.

filter
The filter method applies a predicate to each element in a collection and

returns another collection consisting of only those elements for which the

predicate returned true.

• A predicate is function that returns a Boolean value.

• It returns either true or false.

foreach
The foreach method of a Scala collection calls its input function on each

element of the collection, but does not return anything.

• It is similar to the map method.

• The only difference between the two methods is that map returns a

collection and foreach does not return anything.

• It is a rare method that is used for its side effects.

reduce
The reduce method returns a single value for a given collection.

• The input function to the reduce method takes two inputs at a time and

returns one value.

• Essentially, the input function is a binary operator that must be both

associative and commutative.

	Slide 1
	Slide 2: Scala
	Slide 3: Scala
	Slide 4: Scala Shell
	Slide 5: Running Scala Script
	Slide 6: A Standalone Scala Application
	Slide 7: Compiling and Running Scala
	Slide 8: Basic Scala Variables
	Slide 9: Defining Variables
	Slide 10: variables vs values
	Slide 11: Integer types
	Slide 12: Floating point types
	Slide 13: Strings and Symbols
	Slide 14: Booleans and comparisons
	Slide 15: Conditionals with if
	Slide 16: Everything is an Expression
	Slide 17: Conditionals are also Expressions
	Slide 18: Loops with while and dowhile
	Slide 19: for loops
	Slide 20: Range objects
	Slide 21: for as an expression
	Slide 22: Defining Functions
	Slide 23: Defining Functions
	Slide 24: Calling functions
	Slide 25: Higher-Order Methods
	Slide 26: Function Literals
	Slide 27: Closures
	Slide 28: Classes
	Slide 29: Singletons
	Slide 30: All types are classes
	Slide 31: Case class
	Slide 32: Pattern Matching
	Slide 33: Pattern Matching
	Slide 34: All operators are methods
	Slide 35: Traits
	Slide 36: Tuples
	Slide 37: Option Type
	Slide 38: Array
	Slide 39: Lists
	Slide 40: Vector
	Slide 41: Map
	Slide 42: Higher-Order Methods on map
	Slide 43: Higher-Order Methods on map
	Slide 44: Higher-Order Methods on map
	Slide 45: flatMap
	Slide 46: filter
	Slide 47: foreach
	Slide 48: reduce

